Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62.523
1.
Int J Biol Sci ; 20(7): 2555-2575, 2024.
Article En | MEDLINE | ID: mdl-38725861

Staphylococcus aureus (S. aureus) persistence in macrophages, potentially a reservoir for recurrence of chronic osteomyelitis, contributes to resistance and failure in treatment. As the mechanisms underlying survival of S. aureus in macrophages remain largely unknown, there has been no treatment approved. Here, in a mouse model of S. aureus osteomyelitis, we identified significantly up-regulated expression of SLC7A11 in both transcriptomes and translatomes of CD11b+F4/80+ macrophages, and validated a predominant distribution of SLC7A11 in F4/80+ cells around the S. aureus abscess. Importantly, pharmacological inhibition or genetic knockout of SLC7A11 promoted the bactericidal function of macrophages, reduced bacterial burden in the bone and improved bone structure in mice with S. aureus osteomyelitis. Mechanistically, aberrantly expressed SLC7A11 down-regulated the level of intracellular ROS and reduced lipid peroxidation, contributing to the impaired bactericidal function of macrophages. Interestingly, blocking SLC7A11 further activated expression of PD-L1 via the ROS-NF-κB axis, and a combination therapy of targeting both SLC7A11 and PD-L1 significantly enhanced the efficacy of clearing S. aureus in vitro and in vivo. Our findings suggest that targeting both SLC7A11 and PD-L1 is a promising therapeutic approach to reprogram the bactericidal function of macrophages and promote bacterial clearance in S. aureus osteomyelitis.


Macrophages , Osteomyelitis , Staphylococcal Infections , Staphylococcus aureus , Animals , Osteomyelitis/microbiology , Osteomyelitis/metabolism , Osteomyelitis/genetics , Mice , Macrophages/metabolism , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism
2.
Sci Rep ; 14(1): 10758, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730020

Staphylococcus aureus is a frequent agent of bacteraemia. This bacterium has a variety of virulence traits that allow the establishment and maintenance of infection. This study explored the virulence profile of S. aureus strains causing paediatric bacteraemia (SAB) in Manhiça district, Mozambique. We analysed 336 S. aureus strains isolated from blood cultures of children younger than 5 years admitted to the Manhiça District Hospital between 2001 and 2019, previously characterized for antibiotic susceptibility and clonality. The strains virulence potential was evaluated by PCR detection of the Panton-Valentine leucocidin (PVL) encoding genes, lukS-PV/lukF-PV, assessment of the capacity for biofilm formation and pathogenicity assays in Galleria mellonella. The overall carriage of PVL-encoding genes was over 40%, although reaching ~ 70 to 100% in the last years (2014 to 2019), potentially linked to the emergence of CC152 lineage. Strong biofilm production was a frequent trait of CC152 strains. Representative CC152 and CC121 strains showed higher virulence potential in the G. mellonella model when compared to reference strains, with variations within and between CCs. Our results highlight the importance of monitoring the emergent CC152-MSSA-PVL+ and other lineages, as they display important virulence traits that may negatively impact the management of SAB paediatric patients in Manhiça district, Mozambique.


Bacteremia , Biofilms , Community-Acquired Infections , Staphylococcal Infections , Staphylococcus aureus , Humans , Mozambique/epidemiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/isolation & purification , Virulence/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Biofilms/growth & development , Child, Preschool , Bacteremia/microbiology , Bacteremia/epidemiology , Community-Acquired Infections/microbiology , Infant , Animals , Exotoxins/genetics , Bacterial Toxins/genetics , Leukocidins/genetics , Virulence Factors/genetics , Female , Male , Moths/microbiology
3.
BMC Infect Dis ; 24(1): 486, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730362

BACKGROUND: Recently, linezolid-resistant staphylococci have become an emerging problem worldwide. Understanding the mechanisms of resistance, molecular epidemiology and transmission of linezolid-resistant CoNS in hospitals is very important. METHODS: The antimicrobial susceptibilities of all isolates were determined by the microdilution method. The resistance mechanisms and molecular characteristics of the strains were determined using whole-genome sequencing and PCR. RESULTS: All the strains were resistant to oxacillin and carried the mecA gene; 13 patients (36.1%) had prior linezolid exposure. Most S. epidermidis and S. hominis isolates were ST22 and ST1, respectively. MLST typing and evolutionary analysis indicated most linezolid-resistant CoNS strains were genetically related. In this study, we revealed that distinct CoNS strains have different mechanisms of linezolid resistance. Among ST22-type S. epidermidis, acquisition of the T2504A and C2534T mutations in the V domain of the 23 S rRNA gene, as well as mutations in the ribosomal proteins L3 (L101V, G152D, and D159Y) and L4 (N158S), were linked to the development of linezolid resistance. In S. cohnii isolates, cfr, S158Y and D159Y mutations in the ribosomal protein L3 were detected. Additionally, emergence of the G2576T mutation and the cfr gene were major causes of linezolid resistance in S. hominis isolates. The cfr gene, G2576T and C2104T mutations, M156T change in L3 protein, and I188S change in L4 protein were found in S. capitis isolates. CONCLUSION: The emergence of linezolid-resistant CoNS in the environment is concerning because it involves clonal dissemination and frequently coexists with various drug resistance mechanisms.


Anti-Bacterial Agents , Linezolid , Microbial Sensitivity Tests , Staphylococcal Infections , Tertiary Care Centers , Linezolid/pharmacology , Humans , China/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Female , Male , Middle Aged , Multilocus Sequence Typing , Aged , Whole Genome Sequencing , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/classification , Staphylococcus/enzymology , Coagulase/metabolism , Coagulase/genetics , RNA, Ribosomal, 23S/genetics , Adult , Methicillin Resistance/genetics , Mutation , Bacterial Proteins/genetics
4.
BMC Vet Res ; 20(1): 200, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745199

BACKGROUND: In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS: After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION: This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.


Escherichia coli Infections , Escherichia coli , Haplotypes , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Milk/microbiology , Milk/cytology , Female , Mastitis, Bovine/microbiology , Staphylococcus aureus/physiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cell Count/veterinary , Body Temperature , Vagina/microbiology
5.
BMC Infect Dis ; 24(1): 494, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745289

BACKGROUND: Brain-heart infusion agar supplemented with 4 µg/mL of vancomycin (BHI-V4) was commonly used for the detection of heterogeneous (hVISA) and vancomycin-intermediate Staphylococcus aureus (VISA). However, its diagnostic value remains unclear. This study aims to compare the diagnostic accuracy of BHI-V4 with population analysis profiling with area under the curve (PAP-AUC) in hVISA/VISA. METHODS: The protocol of this study was registered in INPLASY (INPLASY2023120069). The PubMed and Cochrane Library databases were searched from inception to October 2023. Review Manager 5.4 was used for data visualization in the quality assessment, and STATA17.0 (MP) was used for statistical analysis. RESULTS: In total, eight publications including 2153 strains were incorporated into the meta-analysis. Significant heterogeneity was evident although a threshold effect was not detected across the eight studies. The summary receiver operating characteristic (SROC) was 0.77 (95% confidence interval [CI], 0.74-0.81). The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic score and diagnostic odds ratio were 0.59 (95% CI: 0.46-0.71), 0.96 (95%CI: 0.83-0.99), 14.0 (95% CI, 3.4-57.1), 0.43 (95%CI, 0.32-0.57), 3.48(95%CI, 2.12-4.85) and 32.62 (95%CI, 8.31-128.36), respectively. CONCLUSION: Our study showed that BHI-V4 had moderate diagnostic accuracy for diagnosing hVISA/VISA. However, more high-quality studies are needed to assess the clinical utility of BHI-V4.


Anti-Bacterial Agents , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus aureus , Vancomycin , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/diagnosis , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Sensitivity and Specificity , Vancomycin Resistance , Culture Media , Area Under Curve
6.
Ugeskr Laeger ; 186(16)2024 Apr 15.
Article Da | MEDLINE | ID: mdl-38704724

Pyomyositis is a bacterial infection of striated muscle, usually located to muscles in the extremities or pelvis. We present a microbiologically unique case report of pyomyositis in the sternocleidomastoid muscle (the first of its kind in Denmark) caused by Staphylococcus epidermidis, S. capitis and possibly Streptococcus pneumoniae. Pyomyositis is very rare but can lead to critical complications such as endocarditis and sepsis. It is therefore important to know the condition when evaluating an infected patient with muscle pain. Treatment consists of antibiotics and - if relevant - surgical abscess drainage.


Anti-Bacterial Agents , Neck Muscles , Pyomyositis , Staphylococcal Infections , Humans , Pyomyositis/microbiology , Pyomyositis/diagnosis , Pyomyositis/drug therapy , Female , Adult , Neck Muscles/pathology , Neck Muscles/diagnostic imaging , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Staphylococcus epidermidis/isolation & purification , Streptococcus pneumoniae/isolation & purification
7.
Sci Rep ; 14(1): 10466, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714772

Right-sided infective endocarditis (RSIE) is less common than left-sided infective endocarditis (LSIE) and exhibits distinct epidemiological, clinical, and microbiological characteristics. Previous studies have focused primarily on RSIE in patients with intravenous drug use. We investigated the characteristics and risk factors for RSIE in an area where intravenous drug use is uncommon. A retrospective cohort study was conducted at a tertiary hospital in South Korea. Patients diagnosed with infective endocarditis between November 2005 and August 2017 were categorized into LSIE and RSIE groups. Of the 406 patients, 365 (89.9%) had LSIE and 41 (10.1%) had RSIE. The mortality rates were 31.7% in the RSIE group and 31.5% in the LSIE group (P = 0.860). Patients with RSIE had a higher prevalence of infection with Staphylococcus aureus (29.3% vs. 13.7%, P = 0.016), coagulase-negative staphylococci (17.1% vs. 6.0%, P = 0.022), and gram-negative bacilli other than HACEK (12.2% vs. 2.2%, P = 0.003). Younger age (adjusted odds ratio [aOR] 0.97, 95% confidence interval [CI] 0.95-0.99, P = 0.006), implanted cardiac devices (aOR 37.75, 95% CI 11.63-141.64, P ≤ 0.001), and central venous catheterization  (aOR 4.25, 95%  CI 1.14-15.55, P = 0.029) were independent risk factors for RSIE. Treatment strategies that consider the epidemiologic and microbiologic characteristics of RSIE are warranted.


Endocarditis , Humans , Male , Republic of Korea/epidemiology , Female , Risk Factors , Retrospective Studies , Middle Aged , Aged , Endocarditis/epidemiology , Endocarditis/mortality , Endocarditis/microbiology , Adult , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Endocarditis, Bacterial/epidemiology , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/mortality , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Prevalence , Tertiary Care Centers
8.
Article En | MEDLINE | ID: mdl-38747852

This study aimed to identify factors associated with colonization by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in adult patients admitted to a Brazilian hospital. This is a cross-sectional study, in which patients underwent a nasal swab and were asked about hygiene behavior, habits, and clinical history. Among the 702 patients, 180 (25.6%) had S. aureus and 21 (2.9%) MRSA. The factors associated with MRSA colonization were attending a gym (OR 4.71; 95% CI; 1.42 - 15.06), smoking habit in the last year (OR 2.37; 95% CI; 0.88 - 6.38), previous hospitalization (OR 2.18; CI 95%; 0.89 - 5.25), and shared personal hygiene items (OR 1.99; 95% CI; 0.71 - 5.55). At the time of admission, colonization by CA-MRSA isolates was higher than that found in the general population. This can be an important public health problem, already endemic in hospitals, whose factors such as those associated with habits (smoking cigarettes) and behaviors (team sports practice and activities in gyms) have been strongly highlighted. These findings may help developing infection control policies, allowing targeting patients on higher-risk populations for MRSA colonization.


Community-Acquired Infections , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Cross-Sectional Studies , Male , Female , Staphylococcal Infections/microbiology , Community-Acquired Infections/microbiology , Middle Aged , Adult , Risk Factors , Brazil/epidemiology , Young Adult , Aged , Socioeconomic Factors , Carrier State/microbiology , Adolescent
9.
J Med Microbiol ; 73(5)2024 May.
Article En | MEDLINE | ID: mdl-38743043

Introduction. Staphylococcus epidermidis biofilms are one of the major causes of bloodstream infections related to the use of medical devices. The diagnosis of these infections is challenging, delaying their treatment and resulting in increased morbidity and mortality rates. As such, it is urgent to characterize the mechanisms employed by this bacterium to endure antibiotic treatments and the response of the host immune system, to develop more effective therapeutic strategies. In several bacterial species, the gene codY was shown to encode a protein that regulates the expression of genes involved in biofilm formation and immune evasion. Additionally, in a previous study, our group generated evidence indicating that codY is involved in the emergence of viable but non-culturable (VBNC) cells in S. epidermidis.Gap statement/Hypothesis. As such, we hypothesized that the gene codY has have an important role in this bacterium virulence.Aim. This study aimed to assess, for the first time, the impact of the deletion of the gene codY in S. epidermidis virulence, namely, in antibiotic susceptibility, biofilm formation, VBNC state emergence and in vitro host immune system response.Methodology. Using an allelic replacement strategy, we constructed and then characterized an S. epidermidis strain lacking codY, in regards to biofilm and VBNC cell formation, susceptibility to antibiotics as well as their role in the interaction with human blood and plasma. Additionally, we investigate whether the codY gene can impact the activation of innate immune cells by evaluating the production of both pro- and anti-inflammatory cytokines by THP-1 macrophages.Results. We demonstrated that the deletion of the gene codY resulted in biofilms with less c.f.u. counts and fewer VBNC cells. Furthermore, we show that although WT and mutant cells were similarly internalized in vitro by human macrophages, a stronger cytokine response was elicited by the mutant in a toll-like receptor 4-dependent manner.Conclusion. Our results indicate that codY contributes to S. epidermidis virulence, which in turn may have an impact on our ability to manage the biofilm-associated infections caused by this bacterium.


Bacterial Proteins , Biofilms , Cytokines , Macrophages , Staphylococcus epidermidis , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/physiology , Biofilms/growth & development , Humans , Macrophages/microbiology , Macrophages/immunology , Cytokines/metabolism , Cytokines/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Gene Deletion , Virulence , Microbial Viability
10.
Pathog Dis ; 822024 Feb 07.
Article En | MEDLINE | ID: mdl-38730561

Antibiotic resistance (ATBR) is increasing every year as the overuse of antibiotics (ATBs) and the lack of newly emerging antimicrobial agents lead to an efficient pathogen escape from ATBs action. This trend is alarming and the World Health Organization warned in 2021 that ATBR could become the leading cause of death worldwide by 2050. The development of novel ATBs is not fast enough considering the situation, and alternative strategies are therefore urgently required. One such alternative may be the use of non-thermal plasma (NTP), a well-established antimicrobial agent actively used in a growing number of medical fields. Despite its efficiency, NTP alone is not always sufficient to completely eliminate pathogens. However, NTP combined with ATBs is more potent and evidence has been emerging over the last few years proving this is a robust and highly effective strategy to fight resistant pathogens. This minireview summarizes experimental research addressing the potential of the NTP-ATBs combination, particularly for inhibiting planktonic and biofilm growth and treating infections in mouse models caused by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The published studies highlight this combination as a promising solution to emerging ATBR, and further research is therefore highly desirable.


Anti-Bacterial Agents , Biofilms , Plasma Gases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Plasma Gases/pharmacology , Animals , Humans , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Mice , Methicillin-Resistant Staphylococcus aureus/drug effects , Drug Resistance, Bacterial , Drug Resistance, Microbial , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Disease Models, Animal , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy
11.
Sci Rep ; 14(1): 10021, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693249

Staphylococcus aureus is one of the most important human pathogenic bacteria and environmental surfaces play an important role in the spread of the bacterium. Presence of S. aureus on children's playgrounds and on toys was described in international studies, however, little is known about the prevalence and characteristics of S. aureus at playgrounds in Europe. In this study, 355 samples were collected from playgrounds from 16 cities in Hungary. Antibiotic susceptibility of the isolates was tested for nine antibiotics. Presence of virulence factors was detected by PCR. Clonal diversity of the isolates was tested by PFGE and MLST. The overall prevalence of S. aureus was 2.81% (10/355) and no MRSA isolates were found. Presence of spa (10), fnbA (10), fnbB (5), icaA (8), cna (7), sea (2), hla (10), hlb (2) and hlg (6) virulence genes were detected. The isolates had diverse PFGE pulsotypes. With MLST, we have detected isolates belonging to ST8 (CC8), ST22 (CC22), ST944 and ST182 (CC182), ST398 (CC398), ST6609 (CC45), ST3029 and ST2816. We have identified a new sequence type, ST6609 of CC45. S. aureus isolates are present on Hungarian playgrounds, especially on plastic surfaces. The isolates were clonally diverse and showed resistance to commonly used antibiotics. These data reinforce the importance of the outdoor environment in the spread for S. aureus in the community.


Multilocus Sequence Typing , Staphylococcus aureus , Virulence Factors , Hungary/epidemiology , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/classification , Child , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Microbial Sensitivity Tests , Genetic Variation , Play and Playthings
12.
World J Urol ; 42(1): 296, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709302

PURPOSE: This study aimed to ascertain the prevalence and risk factors for developing staphylococcal urinary tract infections (UTIs) in the Casablanca area of Morocco. METHODS: In Casablanca, Morocco, a retrospective evaluation of 772 UTIs patients was conducted between January 2020 and December 2022. The research included two groups of patients: those with staphylococcal UTIs and those without. Sex, age, chronic illnesses, antibiotic exposure, urinary catheterization, urological surgery, and UTIs history were the risk variables assessed. We employed a logistic regression model to identify the characteristics that were predictive of staphylococcal UTIs. RESULTS: Eight staphylococcal species were responsible for 16.84% of UTIs in 772 non-repeating individuals. Patients infected with S. saprophyticus (35.38%) were the most common, followed by those infected with S. epidermidis (24.61%), S. aureus (13.85%), and S. hemolyticus (10.78%). Multivariate logistic regression analysis revealed that male sex (95% CI: 0.261-0.563), immunosuppression and immunosuppressive treatments (95% CI: 0.0068-0.64), chronic diseases (95% CI: 0.407-0.965), previous UTIs (95% CI: 0.031-0.228), frequency of urination more than 8 times a day (95% CI:1.04-3.29), frequency of urination once or twice a day (95% CI: 1.05-2.39), and urinary catheterization (95% CI: 0.02-0.22) were the most likely predictors of staphylococcal UTIs. In addition, a larger proportion of patients with staphylococcal UTIs were made aware of the risk factors associated with staphylococcal UTIs (52.31%, χ2 = 4.82, = 0.014). CONCLUSIONS: This is the first global study to evaluate the predictive factors for acquiring UTIs caused by staphylococci. Monitoring these factors will enable medical authorities to devise effective strategies for managing UTIs and combating antibiotic resistance.


Staphylococcal Infections , Urinary Tract Infections , Humans , Morocco/epidemiology , Urinary Tract Infections/epidemiology , Urinary Tract Infections/microbiology , Male , Female , Risk Factors , Staphylococcal Infections/epidemiology , Retrospective Studies , Middle Aged , Adult , Prevalence , Aged , Young Adult , Adolescent
13.
Nat Commun ; 15(1): 3666, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38693120

Respiratory viral infection increases host susceptibility to secondary bacterial infections, yet the precise dynamics within airway epithelia remain elusive. Here, we elucidate the pivotal role of CD47 in the airway epithelium during bacterial super-infection. We demonstrated that upon influenza virus infection, CD47 expression was upregulated and localized on the apical surface of ciliated cells within primary human nasal or bronchial epithelial cells. This induced CD47 exposure provided attachment sites for Staphylococcus aureus, thereby compromising the epithelial barrier integrity. Through bacterial adhesion assays and in vitro pull-down assays, we identified fibronectin-binding proteins (FnBP) of S. aureus as a key component that binds to CD47. Furthermore, we found that ciliated cell-specific CD47 deficiency or neutralizing antibody-mediated CD47 inactivation enhanced in vivo survival rates. These findings suggest that interfering with the interaction between airway epithelial CD47 and pathogenic bacterial FnBP holds promise for alleviating the adverse effects of super-infection.


CD47 Antigen , Epithelial Cells , Staphylococcal Infections , Staphylococcus aureus , Superinfection , CD47 Antigen/metabolism , CD47 Antigen/genetics , Humans , Animals , Superinfection/microbiology , Mice , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/virology , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Influenza, Human/metabolism , Influenza, Human/immunology , Influenza, Human/virology , Bacterial Adhesion , Respiratory Mucosa/metabolism , Respiratory Mucosa/microbiology , Respiratory Mucosa/virology , Mice, Inbred C57BL , Bronchi/metabolism , Bronchi/cytology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Mice, Knockout , Influenza A Virus, H1N1 Subtype
14.
BMC Vet Res ; 20(1): 169, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698383

BACKGROUND: Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy. This can contribute to multidrug-resistance in bacterial species. The diagnostic market lacks a test that has the advantages of SCC and also recognizes the species of pathogen causing the inflammation. Therefore, the aim of our study was to develop a lateral flow immunoassay (LFIA) based on elongation factor Tu for identifying most prevalent Gram-positive cocci responsible for causing mastitis including Streptococcus uberis, Streptococcus agalactiae and Staphylococcus aureus. RESULTS: As a result, we showed that the assay for S. uberis detection demonstrated a specificity of 89.02%, a sensitivity of 43.59%, and an accuracy of 80.3%. In turn, the second variant - assay for Gram-positive cocci reached a specificity of 95.59%, a sensitivity of 43.28%, and an accuracy of 78.33%. CONCLUSIONS: Our study shows that EF-Tu is a promising target for LFIA and we have delivered evidence that further evaluation could improve test parameters and fill the gap in the mastitis diagnostics market.


Mastitis, Bovine , Streptococcus agalactiae , Streptococcus , Mastitis, Bovine/diagnosis , Mastitis, Bovine/microbiology , Animals , Cattle , Female , Streptococcus agalactiae/isolation & purification , Streptococcus/isolation & purification , Staphylococcus aureus/isolation & purification , Sensitivity and Specificity , Streptococcal Infections/veterinary , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Gram-Positive Cocci/isolation & purification , Immunoassay/veterinary , Immunoassay/methods , Staphylococcal Infections/veterinary , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Milk/microbiology , Milk/cytology
15.
Microb Genom ; 10(5)2024 May.
Article En | MEDLINE | ID: mdl-38739116

Staphylococcus aureus asymptomatically colonises 30 % of humans but can also cause a range of diseases, which can be fatal. In 2017 S. aureus was associated with 20 000 deaths in the USA alone. Dividing S. aureus isolates into smaller sub-groups can reveal the emergence of distinct sub-populations with varying potential to cause infections. Despite multiple molecular typing methods categorising such sub-groups, they do not take full advantage of S. aureus genome sequences when describing the fundamental population structure of the species. In this study, we developed Staphylococcus aureus Lineage Typing (SaLTy), which rapidly divides the species into 61 phylogenetically congruent lineages. Alleles of three core genes were identified that uniquely define the 61 lineages and were used for SaLTy typing. SaLTy was validated on 5000 genomes and 99.12 % (4956/5000) of isolates were assigned the correct lineage. We compared SaLTy lineages to previously calculated clonal complexes (CCs) from BIGSdb (n=21 173). SALTy improves on CCs by grouping isolates congruently with phylogenetic structure. SaLTy lineages were further used to describe the carriage of Staphylococcal chromosomal cassette containing mecA (SCCmec) which is carried by methicillin-resistant S. aureus (MRSA). Most lineages had isolates lacking SCCmec and the four largest lineages varied in SCCmec over time. Classifying isolates into SaLTy lineages, which were further SCCmec typed, allowed SaLTy to describe high-level MRSA epidemiology. We provide SaLTy as a simple typing method that defines phylogenetic lineages (https://github.com/LanLab/SaLTy). SaLTy is highly accurate and can quickly analyse large amounts of S. aureus genome data. SaLTy will aid the characterisation of S. aureus populations and ongoing surveillance of sub-groups that threaten human health.


Phylogeny , Staphylococcal Infections , Staphylococcus aureus , Staphylococcus aureus/genetics , Staphylococcus aureus/classification , Staphylococcus aureus/isolation & purification , Humans , Staphylococcal Infections/microbiology , Genome, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Alleles
16.
Virulence ; 15(1): 2352476, 2024 Dec.
Article En | MEDLINE | ID: mdl-38741276

Staphylococcus aureus (S. aureus) is well known for its biofilm formation ability and is responsible for serious, chronic refractory infections worldwide. We previously demonstrated that advanced glycation end products (AGEs), a hallmark of chronic hyperglycaemia in diabetic tissues, enhanced biofilm formation by promoting eDNA release via sigB upregulation in S. aureus, contributing to the high morbidity and mortality of patients presenting a diabetic foot ulcer infection. However, the exact regulatory network has not been completely described. Here, we used pull-down assay and LC-MS/MS to identify the GlmS as a candidate regulator of sigB in S. aureus stimulated by AGEs. Dual-luciferase assays and electrophoretic mobility shift assays (EMSAs) revealed that GlmS directly upregulated the transcriptional activity of sigB. We constructed NCTC 8325 ∆glmS for further validation. qRT-PCR analysis revealed that AGEs promoted both glmS and sigB expression in the NCTC 8325 strain but had no effect on NCTC 8325 ∆glmS. NCTC 8325 ∆glmS showed a significant attenuation in biofilm formation and virulence factor expression, accompanied by a decrease in sigB expression, even under AGE stimulation. All of the changes, including pigment deficiency, decreased haemolysis ability, downregulation of hla and hld expression, and less and sparser biofilms, indicated that sigB and biofilm formation ability no longer responded to AGEs in NCTC 8325 ∆glmS. Our data extend the understanding of GlmS in the global regulatory network of S. aureus and demonstrate a new mechanism by which AGEs can upregulate GlmS, which directly regulates sigB and plays a significant role in mediating biofilm formation and virulence factor expression.


Bacterial Proteins , Biofilms , Gene Expression Regulation, Bacterial , Glycation End Products, Advanced , Staphylococcal Infections , Staphylococcus aureus , Virulence Factors , Biofilms/growth & development , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence Factors/genetics , Glycation End Products, Advanced/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcal Infections/microbiology , Sigma Factor/genetics , Sigma Factor/metabolism , Humans
17.
ACS Biomater Sci Eng ; 10(5): 3401-3411, 2024 May 13.
Article En | MEDLINE | ID: mdl-38624061

Methicillin-resistant Staphylococcus aureus (MRSA) causes great health hazards to society because most antibiotics are ineffective. Photodynamic treatment (PDT) has been proposed to combat MRSA due to the advantage of imaging-guided no-drug resistance therapy. However, the traditional photosensitizers for PDT are limited by aggregation-caused quenching for imaging and low photodynamic antibacterial efficiency. In this work, we synthesize a new aggregation-induced emission (AIE) photosensitizer (APNO), which can ultrafast distinguish between Gram-positive and Gram-negative bacteria within 3 s by AIE-active photosensitizer imaging. Meanwhile, APNO can generate antibacterial reactive oxygen species under light irradiation, which holds potential for antibacterial PDT. Then, APNO is loaded by PHEAA hydrogel to obtain a highly efficient photodynamic hydrogel (APNO@gel). In vitro results show complete inhibition of MRSA by APNO@gel under lower-power light irradiation. Transcriptome analysis is performed to investigate antibacterial mechanism of APNO@gel. Most importantly, APNO@gel also exhibits significant inhibition and killing ability of MRSA in the MRSA wound infection model, which will further promote rapid wound healing. Therefore, the photodynamic hydrogel provides a promising strategy toward MRSA ultrafast imaging and killing.


Anti-Bacterial Agents , Hydrogels , Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Photosensitizing Agents , Methicillin-Resistant Staphylococcus aureus/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Reactive Oxygen Species/metabolism , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcal Infections/diagnostic imaging , Mice , Microbial Sensitivity Tests , Humans
18.
J Med Microbiol ; 73(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38567642

Introduction. Staphylococcus aureus is the leading cause of acute medical implant infections, representing a significant modern medical concern. The success of S. aureus as a pathogen in these cases resides in its arsenal of virulence factors, resistance to multiple antimicrobials, mechanisms of immune modulation, and ability to rapidly form biofilms associated with implant surfaces. S. aureus device-associated, biofilm-mediated infections are often persistent and notoriously difficult to treat, skewing innate immune responses to promote chronic reoccurring infections. While relatively little is known of the role neutrophils play in response to acute S. aureus biofilm infections, these effector cells must be efficiently recruited to sites of infection via directed chemotaxis. Here we investigate the effects of modulating CXC chemokine receptor 2 (CXCR2) activity, predominantly expressed on neutrophils, during S. aureus implant-associated infection.Hypothesis. We hypothesize that modulation of CXCR2 expression and/or signalling activities during S. aureus infection, and thus neutrophil recruitment, extravasation and antimicrobial activity, will affect infection control and bacterial burdens in a mouse model of implant-associated infection.Aim. This investigation aims to elucidate the impact of altered CXCR2 activity during S. aureus biofilm-mediated infection that may help develop a framework for an effective novel strategy to prevent morbidity and mortality associated with implant infections.Methodology. To examine the role of CXCR2 during S. aureus implant infection, we employed a mouse model of indwelling subcutaneous catheter infection using a community-associated methicillin-resistant S. aureus (MRSA) strain. To assess the role of CXCR2 induction or inhibition during infection, treatment groups received daily intraperitoneal doses of either Lipocalin-2 (Lcn2) or AZD5069, respectively. At the end of the study, catheters and surrounding soft tissues were analysed for bacterial burdens and dissemination, and Cxcr2 transcription within the implant-associated tissues was quantified.Results. Mice treated with Lcn2 developed higher bacterial burdens within the soft tissue surrounding the implant site, which was associated with increased Cxcr2 expression. AZD5069 treatment also resulted in increased implant- and tissues-associated bacterial titres, as well as enhanced Cxcr2 expression.Conclusion. Our results demonstrate that CXCR2 plays an essential role in regulating the severity of S. aureus implant-associated infections. Interestingly, however, perturbation of CXCR2 expression or signalling both resulted in enhanced Cxcr2 transcription and elevated implant-associated bacterial burdens. Thus, CXCR2 appears finely tuned to efficiently recruit effector cells and mediate control of S. aureus biofilm-mediated infection.


Methicillin-Resistant Staphylococcus aureus , Pyrimidines , Staphylococcal Infections , Sulfonamides , Mice , Animals , Staphylococcus aureus/physiology , Methicillin-Resistant Staphylococcus aureus/physiology , Receptors, Interleukin-8B/genetics , Staphylococcal Infections/microbiology , Biofilms
19.
J Clin Microbiol ; 62(5): e0144523, 2024 May 08.
Article En | MEDLINE | ID: mdl-38557148

The virulence of methicillin-resistant Staphylococcus aureus (MRSA) and its potentially fatal outcome necessitate rapid and accurate detection of patients colonized with MRSA in healthcare settings. Using the BD Kiestra Total Lab Automation (TLA) System in conjunction with the MRSA Application (MRSA App), an imaging application that uses artificial intelligence to interpret colorimetric information (mauve-colored colonies) indicative of MRSA pathogen presence on CHROMagar chromogenic media, anterior nares specimens from three sites were evaluated for the presence of mauve-colored colonies. Results obtained with the MRSA App were compared to manual reading of agar plate images by proficient laboratory technologists. Of 1,593 specimens evaluated, 1,545 (96.98%) were concordant between MRSA App and laboratory technologist reading for the detection of MRSA growth [sensitivity 98.15% (95% CI, 96.03, 99.32) and specificity 96.69% (95% CI, 95.55, 97.60)]. This multi-site study is the first evaluation of the MRSA App in conjunction with the BD Kiestra TLA System. Using the MRSA App, our results showed 98.15% sensitivity and 96.69% specificity for the detection of MRSA from anterior nares specimens. The MRSA App, used in conjunction with laboratory automation, provides an opportunity to improve laboratory efficiency by reducing laboratory technologists' labor associated with the review and interpretation of cultures.


Automation, Laboratory , Bacteriological Techniques , Methicillin-Resistant Staphylococcus aureus , Sensitivity and Specificity , Staphylococcal Infections , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Humans , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Automation, Laboratory/methods , Bacteriological Techniques/methods , Automation/methods , Colorimetry/methods , Artificial Intelligence
20.
Immunol Cell Biol ; 102(5): 365-380, 2024.
Article En | MEDLINE | ID: mdl-38572664

Staphylococcus aureus is a significant bacterial pathogen in both community and hospital settings, and the escalation of antimicrobial-resistant strains is of immense global concern. Vaccination is an inviting long-term strategy to curb staphylococcal disease, but identification of an effective vaccine has proved to be challenging. Three well-characterized, ubiquitous, secreted immune evasion factors from the staphylococcal superantigen-like (SSL) protein family were selected for the development of a vaccine. Wild-type SSL3, 7 and 11, which inhibit signaling through Toll-like receptor 2, cleavage of complement component 5 and neutrophil function, respectively, were successfully combined into a stable, active fusion protein (PolySSL7311). Vaccination of mice with an attenuated form of the PolySSL7311 protein stimulated significantly elevated specific immunoglobulin G and splenocyte proliferation responses to each component relative to adjuvant-only controls. Vaccination with PolySSL7311, but not a mixture of the individual proteins, led to a > 102 reduction in S. aureus tissue burden compared with controls after peritoneal challenge. Comparable antibody responses were elicited after coadministration of the vaccine in either AddaVax (an analog of MF59) or an Alum-based adjuvant; but only AddaVax conferred a significant reduction in bacterial load, aligning with other studies that suggest both cellular and humoral immune responses are necessary for protective immunity to S. aureus. Anti-sera from mice immunized with PolySSL7311, but not individual proteins, partially neutralized the functional activities of SSL7. This study confirms the importance of these SSLs for the survival of S. aureus in vivo and suggests that PolySSL7311 is a promising vaccine candidate.


Bacterial Proteins , Staphylococcal Infections , Staphylococcal Vaccines , Staphylococcus aureus , Superantigens , Animals , Staphylococcus aureus/immunology , Staphylococcal Vaccines/immunology , Superantigens/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/prevention & control , Mice , Bacterial Proteins/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Female , Recombinant Fusion Proteins/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Feasibility Studies , Vaccination , Antigens, Bacterial/immunology , Mice, Inbred BALB C , Adjuvants, Immunologic
...